INTRODUCTION

The Kimball Physics ES-423E (Extended Life) Lanthanum Hexaboride LaB$_6$ Cathode is a high performance, resistively heated, thermionic electron source. It is currently employed in many brightness-limited electron optical systems: SEM’s, TEM’s, probes, electron lithography systems, etc. The emitter is a 15 µm diameter (standard) oriented-single-crystal, <100> surface (standard) mounted on the end of a single-piece, stress-free carbon heater rod, held in place by a carbon ferrule.

The model ES-423 is available with the LaB$_6$ crystal cut at a cone angle of 60º or 90º and a microflat size from 2 µm to 320 µm. These dimensions are included in the part number, the standard ES-423E style 90-15, having a 90º cone with a 15 µm microflat. The LaB$_6$ cathode is available mounted on a standard AEI base, a Kimball Physics CB-104 ceramic base, or on a variety of custom bases for particular SEM or TEM systems.

HANDLING

Cathodes are fragile and caution must be used in handling. Do not touch the cathode structure itself, only the cathode base. The cathodes are shipped vacuum clean and ready to install. The use of clean room gloves is recommended to keep parts free of fingerprints and other contaminants.

To remove the cathode assembly from the purple shipping container:

a) Place the purple base on a level surface.
b) Holding onto the lower part (purple) of the shipping container, unscrew the upper cover (plexiglass) and remove it vertically to avoid hitting the cathode.
c) Grasp the edges of the cathode base and depress the push button on the side of the container to release the cathode base (and whole assembly).
d) Carefully lift off the cathode assembly.

OPERATING VACUUM

A vacuum of 1x10$^{-6}$ torr or better is required for proper operation of the cathode, but is not considered satisfactory for long life operation. A pressure of less than 5x10$^{-7}$ torr (preferably 1x10$^{-7}$ torr) is required for longer lifetimes. Cathode lifetime will increase as the vacuum is reduced to the 10$^{-8}$ torr range. (Reference Kimball Physics Technical Bulletin #LaB$_6$-02, “The Relationship Between LaB$_6$ and Gun Vacuum” for additional information.)

INITIAL RUN-UP

In commercial microscopes, follow the initial start-up procedure recommended by the manufacturer. This serves the purpose of outgassing water vapor form inside the Wehnelt cap (water vapor forms oxides on the LaB$_6$ surface) and removes any oxides that have already formed on the LaB$_6$ surface. Alternatively, for outgassing, run the cathode at reduced power (about 1.9 V at 1.4 A) for 15 to 20 minutes. During this initial run-up, the pressure in the gun will increase and should not be allowed to exceed 1x10$^{-6}$ torr. The temperature should be adjusted up to the normal operating temperature gradually so that pressures do not exceed 1x10$^{-6}$ torr in the process. For operation, pressures of 10$^{-7}$ torr are recommended. The ES-423E cathode is designed to resist thermal shock: after the initial run-up and outgassing of the Wehnelt, the cathode can be turned off and on to maximum current instantly.

OPERATING POWER

During typical operation, the temperature of the LaB$_6$ crystal is in the range of 1700 K (~1.73 A) to the maximum high brightness temperature of 1900 K (~2.12 A) (1425°C to 1625°C). Increasing the power gradually, in small increments, will enable the operator to stop at saturation. The cathode power at saturation will depend on the setting of the bias resistor value. (Reference Kimball Physics Technical Bulletin #LaB$_6$-01, “General Guidelines for Operating ES-423E LaB$_6$ Cathodes,” for further details.) The onset of saturation should be observed with the aid of the cross-over image in TEM’s or the electron emission pattern (EMP) in SEM’s. Always run the cathode at the minimum power necessary for adequate emission at saturation. As with all cathodes, there is a compromise between operating lifetime and total emission current (brightness). See graphs for typical operating parameters of the cathode.

CAUTION: Operating the cathode above 2.1 A will limit the lifetime of the cathode to a few hundred hours.
EMISSION INSTABILITY

The <100> surface of a truncated cathode is sensitive to gas evolution from the condenser lens liner tube during the initial stages of use. Gas pulses, due to electron desorption or heating, can result in emission current variations, which result in sudden changes in the appearance of the cross-over image or the EMP. These patterns will expand or contract symmetrically about their center. This effect can persist for a period of about one day in some instruments, while in others, the effect is small and frequently not noticed.

Sudden sideways motions of the cross-over image or the emission pattern are most likely due to contamination of the Wehnelt aperture or the liner tube in the region of the condenser lenses.

The above instabilities should not be attributed to the cathode, but to contamination of the surfaces within the instrument during loading of the cathode.

SERVICE FOR REPAIR / BREAKAGE

If a problem arises during initial installation, call Kimball Physics Customer Service at (603) 878-1616. Cathodes may be returned to Kimball Physics for evaluation and possible repair with a return authorization number.

In case of breakage, handle the cathode assembly with tweezers, being careful to touch only the carbon mount or the base of the cathode crystal (never the cone or the flat). If broken off prior to usage, place the cathode in a beem capsule, or wrap in Kimwipes, or place in a small plastic bag; then return to Kimball Physics along with the cathode base in the original shipping tube. Unused cathodes can often be remounted, provided the crystal is in good condition.

FURTHER INFORMATION

Additional details are available in the following Kimball Physics Technical Bulletins on the website at www.kimballphysics.com.

- LaB6-01 General Guidelines for Operating ES-423E LaB6 Cathodes
- LaB6-02 The Relationship Between LaB6 and Gun Vacuum
- LaB6-03 Emission Drift - LaB6 Gun Stability
- LaB6-04 Oxygen Activation of LaB6 Cathodes – The Double Saturation Effect
- LaB6-05 Kimball Physics ES-423E LaB6 Cathode Style 60-06 (60° Included Cone Angle, 6 µm Diameter Flat)
- LaB6-06 Kimball Physics ES-423E LaB6 Cathode Operating Instructions for Leica/ Cambridge Stereoscan Series SEM's
- LaB6-07 Recovery of Emission from ES-423E LaB6 Cathodes Following a Vacuum Dump

Fig. 2 Typical Operating Parameters of the ES-423E LaB6 Cathode

V-I CHARACTERISTIC (AVERAGE)
LANTHANUM HEXABORIDE CATHODE
MODEL# ES-423E
02/20/01
BASE STYLE: AEI
LaB6 CRYSTAL SHAPE: 90° CONE
(AVERAGE OF 15 CATHODES)

TRUE TEMPERATURE vs SOURCE VOLTAGE
LANTHANUM HEXABORIDE CATHODE
MODEL# ES-423E
02/20/01
BASE STYLE: AEI
LaB6 CRYSTAL SHAPE: 90° CONE
(AVERAGE OF 15 CATHODES)

EMISSION CURRENT vs POWER (AVERAGE)
LANTHANUM HEXABORIDE CATHODE
MODEL# ES-423E
02/20/01
BASE STYLE: AEI
LaB6 CRYSTAL SHAPE: 90° CONE

TRUE TEMPERATURE vs SOURCE CURRENT
LANTHANUM HEXABORIDE CATHODE
MODEL# ES-423E
02/20/01
BASE STYLE: AEI
LaB6 CRYSTAL SHAPE: 90° CONE
(AVERAGE OF 15 CATHODES)

CALCULATED EMISSION CURRENT
FOUR SIZES OF MICROFLAT
ON LaB6 CRYSTAL:
- 0.200 mm DIA.
- 0.100 mm DIA.
- 0.040 mm DIA
- 0.015 mm DIA.

Kimball Physics
311 Kimball Hill Road, Wilton, NH 03086-9742 USA
Tel: (603) 878-1616 1-888-546-7497 Fax: (603) 878-3700
e-mail: info@kimphys.com Web: www.kimballphysics.com

File: LaB6_ES423_inst2ki.pi02.doc.